unter theilweiser Zersetzung siedendes Oel dar, welches ähnliche Eigenschaften besitzt, wie das oben beschriebene Dimethyldiäthylsulfamid und wie jenes gereinigt wird.

Die Analyse ergab:

Ber. fü	$r SO_2 <: \stackrel{\mathbf{N}}{\stackrel{\mathbf{(C_2 H_5)_2}}{\stackrel{\mathbf{H_5}}{\stackrel{\mathbf{(C_2 H_5)_2}}{\stackrel{\mathbf{(C_2 H_5)_2}}}{\stackrel{\mathbf{(C_2 H_5)_2}}$	\mathbf{G} efunden	
\mathbf{C}	46.14	46.25 pCt.	
\mathbf{H}	9.62	9.89 »	
N	13.46	13.91 »	
\mathbf{s}	15.38	15.21 »	

Durch Einleiten von Dimethylamin in Diäthylamidosulfurylchlorid erhält man ein Diäthyldimethylsulfamid, welches mit dem aus Diäthylamin und Dimethylamidosulfurylchlorid wahrscheinlich identisch ist. Es siedet wie jenes bei 2290 unter partieller Zersetzung; doch mangelte es mir bis jetzt an genügendem Material, um die physikalischen Eigenschaften genauer zu untersuchen.

Leipzig, Physikalisch-chemisches Institut.

319. R. Behrend: Ueber Dimethylsulfaminsäure.

(Eingegangen am 5. Juli; verlesen in der Sitzung von Hrn. A. Pinner.)

Durch Wasser wird Dimethylamidosulfurylchlorid in der Kälte sehr langsam, beim Kochen schneller in Dimethylsulfaminsäure übergeführt. Daneben entsteht durch weitere Zersetzung wenig schwefelsaures Dimethylamin.

1)
$$SO_2 < N(CH_3)_2 + H_2O = SO_2 < N(CH_3)_2 + HCl.$$

2) $SO_2 < N(CH_3)_2 + HCl.$
2) $SO_2 < Cl + 2H_2O = SO_2 < ON H_2(CH_3)_2 + HCl.$

Beim Eindampfen erhält man die Dimethylsulfaminsäure als weisse Krystallmasse, deren Lösung Carbonate mit Leichtigkeit zersetzt.

Neutralisirt man dieselbe mit Baryumcarbonat und dampft ein, so bleibt das Baryumsalz der Säure als weisser krystallinischer Rückstand, welcher durch Waschen mit kaltem Alkohol, in dem er wenig löslich ist, gereinigt wird.

Nach der Analyse kommt ihm die Formel

$$\left(SO_2\right)_O^{N(CH_3)_2}\right)_2Ba \ + \ H_2O \ zu.$$

	Berechnet		Gefunden		
Ba	34.00	34.09	33.91	34.03	pCt.
\mathbf{C}	11.91	11.82			»
\mathbf{H}	3.47	3.74			>>

Eine direkte Bestimmung des Krystallwassers ist unmöglich, da dasselbe erst bei 135° fortgeht, bei welcher Temperatur bereits eine weitergehende Zersetzung stattfindet.

Aus dem Baryumsalz entsteht die freie Säure durch Zersetzen vermittelst Schwefelsäure. Das Filtrat vom Baryumsulfat wird verdampft, und der Rückstand aus heissem Alkohol umkrystallisirt.

Die Säure ist leicht löslich in Wasser und heissem Alkohol, schwieriger in kaltem, schwer löslich in Aether. Sie schmilzt bei ungefähr 165°, doch beginnt schon früher Zersetzung. Beim Kochen mit Kalilauge, Salpetersäure und Wasser wird sie sehr langsam unter Bildung von schwefelsaurem Dimethylamin zersetzt. Bei langsamem Verdunsten der alkoholischen Lösung krystallisirt sie in grossen, sechsseitigen Tafeln.

Die Analyse ergab:

Berechnet	für $\mathrm{SO}_2 \! \ll^{\! \mathbf{N}(\mathrm{CH}_3)_2}_{\mathrm{OH}}$	Gefunden
\mathbf{C}	19.20	19.23 pCt.
\mathbf{H}	5.60	5.98 ° »
\mathbf{N}	11.20	11.31 »
\mathbf{s}	25. 60	25.91 »

Der Aethyläther der Säure entsteht durch Zersetzung des Dimethylamidosulfurylchlorids mittelst der berechneten Menge Natriumäthylat in alkoholischer Lösung. Nach dem Abfiltriren des Chlornatriums hinterbleibt derselbe beim Verdunsten des Alkohols im Vacuum als aromatisch riechendes gelbes Oel, welches sich leicht in Alkohol und Aether, nicht aber in Wasser löst. Beim Erhitzen zersetzt der Aether sich vollständig. Durch alkoholisches Ammoniak wird er in der Kälte nicht angegriffen.

Die Analyse ergab:

Berechnet	$f \ddot{u} r SO_2 << \frac{N(C H_3)_2}{O C_2 H_5}$	Gefunden
\mathbf{C}	31.37	31.04 pCt.
\mathbf{H}	7.19	7.86 ° »
\mathbf{N}	9.15	9.49 »
\mathbf{s}	20.92	20.88 »

Mit dem genaueren Studium der Dimethylsulfaminsäure und ihrer Homologen bin ich beschäftigt.

Leipzig, Physikalisch-Chemisches Institut.